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In this article a method of formulating random coil chains that can be used as models of amorphous 
polymers is described. The method is based on an algorithm that finds self avoiding random (SAR) 
chains on finite lattices. The lattice constant is chosen to be wide enough to avoid the substituents of the 
polymer interfering with one another. As an example, the construction of the two dimensional random 
coil packing structure of polyethylene is discussed. In a following paper three-dimensional models will 
be treated. The mean squared end-to-end distance of chains, generated with this new method, is linear 
in the number of lattice points. 
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I N T R O D U C T I O N  

In a previous paper ~ a method of constructing SAR chains 
on finite lattices was described. This method, henceforth 
called the travelling salesman (TS) method, has a number 
of advantages over random walk (RW) methods. The TS 
method is guaranteed to find a chain covering all lattice 
points using very limited computer time. RW methods 
have this potential only for small lattices, lattices in which 
some points have a large number of neighbours or lattices 
in which almost every point has a coordination number 
(No) of 2. 

However, in an intermediate case, for instance a lattice 
of 300 points with an Nc of 4, a RW method is very time 
consuming while a fully chained lattice (that is, a lattice of 
which every point is on the chain) will not be obtained. 
With the TS method a lattice of 300 points is fully chained 
in a few seconds CPU time of an Amdahl V7B, the 
computer that was used for the calculations. 

Also, the TS method simulates the physical process of a 
polymerization much more satisfactorily than RW 
methods possibly can, because a number of different 
chains are constructed concurrently. The final number of 
chains to be constructed is an input parameter and reflects 
the degree of polymerization desired. If this number is one, 
then the result of applying the TS method on a lattice is 
one chain that covers all lattice points once and only once. 

To construct a model of polyethylene the tetrahedral 
lattice, TL, is a good choice. The N c of every lattice point is 
4 and the chain will have bond angles of 109 ° and dihedral 
angles of 60 ° , - 6 0  ° and 180 ° , similar to the carbon 
backbone of polyethylene. However, filling the 
tetrahedrai lattice using the TS method does not result in 
a good model for polyethylene: if all lattice points are 
occupied there is no more room available for hydrogen 
side groups. 

Before discussing the actual solution of this problem 
(see following section) an outline is given of another 
method that was tested first. This method, resembling the 
slithering snake method (see ref. 2), runs as follows: 

A TL, consisting of N points, is assumed to be fully 
chained. From the chain an arbitrary part of N/3 

connected points is chosen to be the carbon backbone and 
the remaining 2N/3 points are treated as possible 
hydrogen positions. For this particular combination of 
backbone and possible hydrogens a figure of merit is 
calculated, reflecting as to how far the following criteria 
are met: 

(1) Every carbon point, except for the head and the tail, 
must have two carbons and two hydrogens as its nearest 
neighbours. 
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a 

I 

Figure I (a) Layer of tetrahedra; (b) projection of layer 
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Figure 2 Four edged SL polygon 
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Figure 3 (a) 6G polygon; (b) 6T polygon; (c) relation between 
6G and 6T polygons 

(2) Every hydrogen point must have one and only one 
carbon as its nearest neighbour. 

The second step is to calculate the figures of merit of all 
possible backbones obtainable by moving the backbone 
one step along an arbitrary lattice vector. Of this set of 
new backbones the backbone giving the best result is 
chosen as the new starting position and the process is 
repeated until every point of the lattice fulfils either 
condition 1 or condition 2. 

For a lattice of 60 points this method was tried but it 
failed. Only when the length of the carbon backbone was 
diminished (this is the same as introducing vacancies) the 
process produced, within a reasonable amount of time, a 
partition of carbon atoms, hydrogen atoms and vacancies 
that was a good representation of a polyethylene 
molecule. However, the density of the packings generated 
in this way was too low to be physically realistic (less than 
500 kg/m2). As this method did not give any hope for future 
progress it was not pursued any further and another 
method was developed: the double lattice (DL) method. 

DOUBLE LATTICE M E T H O D  FOR 
POLYETHYLENE 

The philosophy behind the double lattice method is 
simple. Let TL be the tetrahedral lattice of which every 
point on completion of the procedure represents a C 
atom, H atom or a vacancy. From the set TL a subset SL is 
chosen. This is done in such a manner that a SAR chain in 
SL constitutes a polyethylene chain in TL. In other words, 
every segment of the SL chain consists of a number of 
CH2-CH2 segments. This number, p, and the geometry of 
SL determine the density of the model. 

In this section the principles of the method are 
explained. For the sake of simplicity this is done using a 
two-dimensional model. In a subsequent paper the three- 
dimensional case will be investigated. 

For the two-dimensional model two assumptions are 
made: 

(1) Instead of the regular three-dimensional tetrahedral 
lattice, TL is now an infinite layer of tetrahedra as shown 
in Figure la. In the following, TL will be represented by a 
projection of this layer (Figure lb). Bond lengths in this 
representation have a value 1. 

(2) Every point of SL is a carbon atom in TL. 
Now we will determine the value of p and try to find 

what TL points SL consists of. 
The first clue is, that the points of SL form polygons 

that have edges that are at least 2 units long, 
corresponding with a gauche distance in TL (see Figure 
lb). In that case p -- 3. When the length of an edge in SL is 
less than 2, the hydrogen points connected to the carbon 
points of this short edge interfere with one another. 
However, making p larger will decrease both the 
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Figure 4 (a) Lattice; (b) with cyclic boundary conditions; (c) the 
lattice as a repeating unit 
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randomness and the density of the models, reason enough 
to keep the value of p as low as possible, preferably 3. In 
that case the edges of the polygons in SL are either 2 
(gauche distance) or v/7 (trans distance, see Figure/b). 

A solution to the problem may be found as follows: first, 
polygons having an uneven number of edges, each edge 
either 2 or x ~  units long, do not fit in the TL lattice. 
Secondly, polygons with four edges do not leave room 
enough for hydrogen. In Figure 2 one possibility is shown. 
The SAR chain, covering every point of the SL, accounts 
for approximately 3/4 of the TL points. This leaves 1/4 for 
hydrogen points and vacancies, not enough for a 
polyethylene model. 

Figure 5 (a) SAR chain on TL lattice; (b) polyethylene carbon 
backbone on TL1 lattice 

Figure 6 Stretched-out polyethylene model 

Figure 7 (a) SL conformation; (b) regular TL conformation 

POLYMER, 1983, Vol 24, April 411 



Random coil chains on hexagonal lattices: V. Morn 

Figure 8 Alternatives for Figure 7b 

To keep the polygons in the plane, there must be an 
even number of trans bonds in a sequence between gauche 
bonds that have the opposite sign and an uneven number 
of trans bonds between gauche bonds that have the same 
sign. The sequences + g - g  and - g + g  are forbidden 
because the distance between nonbonded carbon points is 
too small. The sequences +9+9, - 9 - 9 ,  +gt+g and 
- g t  - g  move the polygons out of the plane and therefore 
they cannot be used. Therefore, the best usable subset SL 
of TL, with the minimum value of p, is the one built of 6T 
polygons. 

The density of two-dimensional models is a quantity 
that is not very well defined. However, we can construct 
an (anisotropic) three-dimensional model by stacking the 
layers of tetrahedra in which the two-dimensional models 
reside. If the spacing between two layers is wide enough, 
taking into accout that every lattice point is occupied by 
one atom only, it can be shown that the density of such a 
model is approximately 880 kg/m 3. 

Figure 9 • -  - 6 :  pair of sun-glasses and ~ : monocle (either 
Figures 7b, 8a or8b) and IUI:  either Figures lob or 10c 

To describe the polygons, the following notation will be 
used: the capitals G and T stand for the gauche and trans 
distance respectively, while + g, - g and t define what turn 
a chain takes. So in terms of distances, two sixsided 
polygons can be constructed in the plane (Figure 3). As 
can be seen, both the GGGGGG (6 G for short, Figure 3a) 
and the T T T T T T  (6T) ring, Figure 3b, use the same 
points of TL. The difference is, that the points of TL that 
are carbon points lie outside and on the 6G ring, while in 
the case of the 6T ring an equal number of carbon points is 
situated inside, outside and on the ring. 6G rings have two 
thirds of their carbon points outside the ring and, 
consequently, in that of their neighbours. This gives rise to 
difficulties filling the plane and 6G tings cannot be used. 
Figure 3c shows how the rings are related to one another. 

AN EXAMPLE 

For SL we take a lattice of 364 points (14 by 26) consisting 
of 6T polygons. Cyclic boundary conditions are used (see 
Figure 4). These cyclic boundary conditions are important 
to avoid non-equivalence of lattice points 1. In Figure 5a 
the SAR chain in SL is drawn and in Figure 5b the 
corresponding polyethylene molecule in TL is given. The 
black chain is the carbon backbone and all the points only 
one bond distance away from the backbone are the 
hydrogens. As may be seen, no hydrogen points exist 
which are connected to more than one carbon point. 

Because of the cyclic boundary conditions, Figure 5a 
and Figure 5b fit together. This can be done on every side 
of the picture. The 364 points of the lattice form a 
repeating unit and by fitting a number of these units 
together a clear picture of the structure of the 
polyethylene model (Figure 6) is obtained. 

A drawback of this model is the regularity, introduced 
by the 6T rings. However, there is a method to introduce 
additional irregularity after the generation of the SAR 
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Figure 10 
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5. 

(a) SL conformation; (b) regular TL conformation; (c) alternative to Figure lOb 

chain. In Figure 7a a 6T ring in SL is shown of which 4 
edges are part of the chain and two are not. In Figure 7b 
the actual conformation in TL is drawn. But in this 
particular case it is not necessary to use the conformation 
of Figure 7b. There are two other conformations that also 
fit in the lattice (Figure 8a and 8b). So, after we have 
constructed the SAR chain in SL, the 6T rings that are 
built like the one in Figure 7a are selected and one of the 
three possible conformations in Fiqures 7b, 8a or 8b is 
chosen. In Figure 9 the places where we can make such 
choices are shown. For every pair of sun-glasses a choice 
from the three possible conformations is demanded. Note 
the two monocles near the end and the beginning of the 
chain. 

In Figure lOa another 6T ring in SL is shown for which 
two different conformations in TL exist, Figure lOb and 
lOc. The conformation in Figure lOc, however, has two 
CH2 groups less than the conformation in Figure lOb, so 
using the Figure lOc conformation instead of the regular 
one lowers the density of the model. In Figure 9 every pair 
of crosshatched hexagons stands for either the 
conformation in Figure lOb or the conformation in Figure 
lOc. To display the effect, the polyethylene molecule of 
Figure 6 is treated by introducing as much variety as 
possible, using the conformations in Figures 8a, 8b and 
lOc instead of those in Figures 7b and lOb. The result is 
drawn in Figure 11. 

Another possibility of lowering the density of the model 
and, at the same time, making room for bulky 
substituents, is to allow the polygons in SL to have edges 
longer than 2 or xf7. SL can, for instance, consist of 
TT(Ttt)TT(Ttt) rings (Figure 12a), T(Tt)T(TttXTtXTtt) 
rings (Figure 12b), TT(T  + o t - g t ) T T ( T  +ot-Ot  ) rings 
(Figure 12c) or any combination of polygons tiling the 
plane. 

For the hypothetic polymer drawn in Figure 13 the ring 
of Figure 12b was used to fill SL. 

THE MEAN SQUARED E N D - T O - E N D  DISTANCE 
AND THE RADIUS OF GYR ATION 

Physical quantities of polymers such as the mean squared 
end-to-end distance (R 2) and the radius of gyration D 2 
are experimentally accessible. It is therefore interesting to 

Figure 11 Polyethylene model, with maximum number of 
alternative conformations 

see what rules the corresponding quantities of the models 
follow. 

The mean squared end-to-end distance of 
unconstrained random walks can be described by 3 

(R 2) =¢I*N ~2 (1) 

in which cl and c2 are constants and N is the number of 
lattice points. To see whether this expression also is valid 
for chains that are generated by the TS method a number 
of chains of differem lengths was generated. Seven lattices 
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J ~  
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7"tt 

a b c 
Figure 12 Larger SL polygons 

Figure 13 Bulky polymer with Figure 12b as SL unit 

Table I Physical parameters 

N a (R2) b (D2) c (D2)/(R 2) (T) d Log (T) 

32 114 16 0.14 0.14 -0 .85  
72 237 35 0.15 0.69 --0.16 

112 350 53 0.15 1.59 0.20 
180 459 87 0.19 4.56 0.66 
264 622 1 23 0.20 1 2.0 1.08 
336 824 157 0.19 22.0 1.34 
448 1132 186 0.16 46.4 1.67 

a N: Number of  lattice points 
b (R2): Mean squared end-to-end distance 
c (D2): Mean squared radius of gyration 
d (T): Mean CPU time in seconds 

Figure 14 Lattices used 

of different size were chained a hundred times. In Figure 
14 the lattices are given. The distance between two lattice 
points is unity. Cyclic boundary conditions are applied. 
The results are given in Table 1. The mean square end-to- 
end distance (R 2) can be described by 

(R 2) = 2.52(6)*N (2) 

The agreement between theory and experiment is very 
good. The constant cl in the expression was determined 
by a least squares fit to the data. The standard deviation in 
the last decimal is given in parenthesis. 

When the constant c2 is also refined, the fit does not 
improve significantly. This is quite remarkable and 
contradicts earlier RW computer simulations on two- 
dimensional lattices (see ref. 3) that produced a value 1.5 
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Figure 16 Typical two-co i l  chain 
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for the constant c2. In Figure 15 observed and calculated 
values are shown. 

The reason for the proportionality between (R z> and N, 
a feature that random walk models lack, is the symmetry 
of the TS method, combined with the strong demand that 
every lattice point is on the chain. The construction of a 
self-avoiding random walk is asymmetric: there is an 
outspoken difference between the starting point and the 
end point. The starting point is fixed and being wrapped in 
by the growing chain. The end point moves and is on the 
outskirts of the model the larger time of the process. As 
soon as the moving endpoint folds back and enters the 
model, the changes are so large that a cul-de-sac is 
encountered and the walk is finished. 

The TS method does not differentiate between the two 
extremes. Every point on the lattice has the same chance 
of becoming one of the extremes of the chain. This does 
not change during the process. 

Also, random walks are known for their capability of 
closing in lattice points that cannot be reached any more. 
This is one of the reasons that the constant c2 for random 
walks will be larger than for methods like the TS method 
that do not show this handicap. 

These essential differences make it difficult to compare 
the TS method with other model-generating methods. 

Equation (2) is valid for the lattices given in Figure 14. 
For lattices of other shapes the constant cl will 
undoubtedly have other values. To make cl independent 
of the shape of the lattice and only dependent on the 
number of points N, every lattice tiling the plane, Figure 17 (a) Chain on a torus; (b) torus unfolded 
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consisting of N lattice points, must be investigated. The 
relative weight of every lattice can be calculated on, for 
instance, considerations of energy derived from the 
relative abundance of gauche conformations. Refinements 
like these fall outside the scope of this article. 

Another quantity of interest is the radius of gyration D 2 
(ref. 4). For unconstrained random walks this quantity is 
one sixth of the mean square end-to-end distance. In Table 
1 values of (D 2) and the ratio (D 2 ) / ( R  2 ) for the different 
lattices are given. 

DISCUSSION 

Limits of the procedure 
With the present algorithm the calculation time is 

approximately quadratic in N: the number of steps the 
procedure takes is ocN and the duration of one step is 
ocN/(N c-l). N is the coordination number of every 
lattice point. In Table 1 the mean CPU time ( T ) ,  in 
seconds, needed to generate a chain of length N is given. 
This time depends on the computer used (i.e. an Amdahl 
V7 B) and the compiler (IBM Fortran H-extended 
optimizing compiler). In general, 

log((T))  = kl + k2*log(N) (3) 

The constants kl and k2, for the lattices under discussion, 
were determined by a least squares fit to the data: kl is 
-4.2(1) and k2 is 2.20(7). Least-squares standard 
deviations in the last decimal are given in parentheses. 

If we do not want to use more than one hour of CPU 
time for one chain, the maximum number of points in 
lattices as drawn in Figure 14 is 3350. As one bond stands 
for 3 CH2-groups, this number corresponds to a 
molecular weight of 140000. 

For three-dimensional models the circumstances are 
generally more favourable in two ways: first, N c is larger 
(in a subsequent paper we will show a three-dimensional 
model of polyethylene on a BCC lattice for which Nc is 8) 
and, secondly, one bond in the SL lattice will correspond 
to a larger number of atoms in TL (for the three- 
dimensional model of polyethylene, one bond in SL is 6 
CH2 groups in TL). The implication is that models of 
polyethylene molecules with a molecular weight of 
600 000 can be generated using one hour of CPU time. 

The present version of CHAIN is written in Fortran. 
However, the whole process is based on bookkeeping 
rather than on arithmetic manipulations. It is therefore 

questionable whether in this case the optimizing compiler 
optimizes the correct steps. That is the reason that a 
version of the program was written in assembler language. 
This version is being tested now and an increase of speed 
of at least a factor 10 is to be expected. 

No significant correlation between T and R could be 
detected. A typical value for the correlation coefficient C 
of these quantities, calculated as 

100 
(R2-(  R2) )(Tk-( T) ) 

k = 1 1/2 
C =y,(R2 _ (  R2 ) )2Z(Tk_ ( T )  )2 

k k 

(4) 

is 0.07. 

Coilin9 
Some chains show features that can be described as 

'coiling': the chain forms coils that are connected by thin 
threads (Figure 16). This is due to the dimension of the 
lattices. Three-dimensional models do not suffer from this 
abberation. 

The cause of this coiling is the use of cyclic boundary 
conditions. The lattices shown in Figure 14 can, because of 
the cyclic boundary conditions, be thought of as lying on 
the surface of a torus. When the chain has crossed the 
torus completely in one direction, as drawn in Figure 17a, 
this crossing prevents further contact between the two 
parts. This effect has no physical counterpart and does not 
occur in three-dimensional models. 

A C K N O W L E D G E M E N T S  

Part of this study was carried out with the financial 
support of the NATO Research Grants Programme. I 
would like to thank Dr F. C. Mijlhoff, Dr R. A. G. de 
Graaff and Professor C. Romers for critical reading of the 
manuscript. 

REFERENCES 

l Morn, V. J. Comp. Chem. 1981, 2, 446 
2 Wall, F. T. and Mandel, F. J. Chem. Phys. 1975, 63, 4592 
3 Windwer, S., Polymer conformation and the Excluded-Volume 

problem, in: 'Markov Chains and Monte Carlo calculations in 
polymer chemistry', (Ed. G. G. Lowry), Marcel Dekker, New York, 
1970 

4 Ziman, J. M. Models of Disorder, Cambridge University Press, 
Cambridge, 1979 

416 POLYMER, 1983, Vol 24, April 


